publications

2023

  1. 2023_auc_theta_gnn_egnn_qgnn_eqgnn.png
    A Comparison Between Invariant and Equivariant Classical and Quantum Graph Neural Networks
    Roy T. Forestano, Marçal Comajoan Cara, Gopal Ramesh Dahale, and 8 more authors
    2023
  2. 2023_auc_param_antisymmetry.png
    Z2 x Z2 Equivariant Quantum Neural Networks: Benchmarking against Classical Neural Networks
    Zhongtian Dong, Marçal Comajoan Cara, Gopal Ramesh Dahale, and 8 more authors
    2023
  3. 2023_groups_desargues.png
    Identifying the group-theoretic structure of machine-learned symmetries
    Roy T. Forestano, Konstantin T. Matchev, Katia Matcheva, and 3 more authors
    Physics Letters B, 2023
  4. 2023_Noisy_H2O_scatter_10ppm.png
    Searching for Novel Chemistry in Exoplanetary Atmospheres Using Machine Learning for Anomaly Detection
    Roy T. Forestano, Konstantin T. Matchev, Katia Matcheva, and 1 more author
    The Astrophysical Journal, Nov 2023
  5. 2023_ariel_posterior.png
    Reproducing Bayesian Posterior Distributions for Exoplanet Atmospheric Parameter Retrievals with a Machine Learning Surrogate Model
    Eyup B. Unlu, Roy T. Forestano, Konstantin T. Matchev, and 1 more author
    Nov 2023
  6. 2023_accelerated_symmetry.png
    Accelerated discovery of machine-learned symmetries: Deriving the exceptional Lie groups G2, F4 and E6
    Roy T. Forestano, Konstantin T. Matchev, Katia Matcheva, and 3 more authors
    Physics Letters B, Nov 2023
  7. U4_generators.png
    Discovering sparse representations of Lie groups with machine learning
    Roy T. Forestano, Konstantin T. Matchev, Katia Matcheva, and 3 more authors
    Physics Letters B, Nov 2023
  8. latent_space_generator.png
    Oracle-Preserving Latent Flows
    Alexander Roman, Roy T. Forestano, Konstantin T. Matchev, and 2 more authors
    Symmetry, Nov 2023
  9. SO10_generators.png
    Deep learning symmetries and their Lie groups, algebras, and subalgebras from first principles
    Roy T Forestano, Konstantin T Matchev, Katia Matcheva, and 3 more authors
    Machine Learning: Science and Technology, Jun 2023

2022

  1. 2022_ariel_posterior.png
    Lessons Learned from Ariel Data Challenge 2022 - Inferring Physical Properties of Exoplanets From Next-Generation Telescopes
    Kai Hou Yip, Quentin Changeat, Ingo Waldmann, and 19 more authors
    In Proceedings of the NeurIPS 2022 Competitions Track, 28 nov–09 dec 2022